A Novel Preparative Method for Heterobimetallic μ - η^2 -(C,C)-Ketene Complexes, Fp-CH₂CO-ML_n [Fp = (η^5 -C₅H₅)Fe(CO)₂] ## Munetaka Akita,* Atsuo Kondoh, and Yoshihiko Moro-oka* Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan A variety of heterobimetallic μ - η^2 -(C,C)-ketene complexes, Fp–CH $_2$ CO–ML $_n$, are prepared through acylation of metal anions, ML $_n$ -, by Fp–CH $_2$ CO–CI. Ketene species, of all the possible primary coupling products among surface species [e.g. CH_x (x = 0—3), CO], have been most frequently postulated as the origin of oxygenated products in the catalytic transformation of syngas. However, the well-known μ -methylene complexes are not commonly carbonylated into μ -ketene complexes presumably owing to the extraordinary stability of the dimetallacyclopropane skeleton. Here we report an indirect preparative method for the first examples of heterobimetallic μ -ketene complexes. μ-Ketene complexes were prepared by acylation of metal anions, ML_n^- , by iron-substituted acetyl chloride (2) which was generated *in situ* by the treatment of the carboxylic acid (1)⁴ with oxalyl dichloride (Scheme 1). Purification by column chromatography gave μ-ketene complexes, (3)—(8), as yellow to orange-red crystals accompanied by dimetallic complexes free from the ketene ligand, Fp-ML_n. This method turned out to be widely applicable to all the metal anions used. Spectral features (Table 1) assignable to Fp and ML_n moieties of (3)—(8) exhibit very close similarities to those of Fp–Me and MeCO– ML_n possessing the partial structures of the alkyl side and the acyl side of μ -ketene complexes, respectively. For example, the 1H and ^{13}C n.m.r. spectra of (3)† are consistent with the formal structure, Fp_A– CH_2CO – Fp_B , and the triplet ^{13}C n.m.r. signal $[^2J(C-H)$ 3.0 Hz] [†] Compound (3) ¹H n.m.r. (in C_6D_6) δ 2.57 (2H, s), 4.17 (5H, s, Fp_A), 4.37 (5H, s, Fp_B); ¹³C n.m.r. (in C_6D_6) δ 86.97, 216.95, other signals are reproduced in Table 1. Table 1. Spectral data of Fp-CH₂CO parts of heterobimetallic μ-ketene complexes, Fp-CH₂CO-ML_{n.}^a | | ${}^{1}Hn.m.r./\delta$ | | ¹³ C n.m.r./δ | | | | T / 1 | |---|------------------------|-------------------------------|----------------------------------|--------|----------------------------------|----------------------------------|---------------------------------| | ML_n | Cp(Fp) | CH ₂ CO | Cp(Fp) | CO(Fp) | CH ₂ | C=O | I.r./cm ⁻¹
ν(C=O) | | Fe(CO) ₂ Cp (3) | 4.17
(s) | 2.57
(s) | 85.34
(d, 179.4) ^b | 217.19 | 30.01
(t, 136.1) ^b | 253.28
(t. 3.0) ^c | 1612 | | Fe(CO) ₂ (η^5 -C ₅ H ₄ Me) (4) | 4.18
(s) | 2.62
(s) | 85.33
(d, 180.7) ^b | 217.35 | 29.92
(t, 136.1) ^b | 255.07 | 1611 | | $Mo(CO)_2(PPh_3)Cp$ (5) | 4.19
(s) | 3.25
(d, 2.2) ^d | 85.07
(d, 178.2) ^b | 217.81 | 32.23
(t, 134.9) ^b | 262.82
(d, 10.7) ^e | 1585 | | Ni(CO)Cp (6) | 4.11
(s) | 2.39
(s) | 85.43
(d, 180.7) ^b | 216.39 | 26.28
(t, 138.0) ^b | 234.68
(t, 3.7) ^c | 1649 | | Mn(CO) ₅ (7) | 4.06
(s) | 2.47
(s) | 85.67g
(d, 181.3)b | 216.29 | 30.78
(t, 136.6) ^b | 260.12 | 1581 | | Co(CO) ₃ (PMe ₂ Ph) (8) | 4.19
(s) | 2.85
(d, 2.2) ^d | 85.67g
(d, 179.0)b | 216.29 | 29.29
(dt, 27.5,e
136.6b) | 200.35
(d, 27.6) ^e | 1620 | ^a ¹H (100 MHz) and ¹³C (125 MHz) n.m.r. spectra were recorded in [2 H₆]benzene unless otherwise noted and i.r. spectra in CH₂Cl₂. Values in parentheses are multiplicity and coupling constant, J in Hz. b ¹J(C-H). c ²J(C-H). d J(H-P). c J(C-P). f Broad triplet (see footnote \ddagger). g In [2 H]chloroform. $$Fp-CH_{2}CO-OH \xrightarrow{(COCl)_{2}} Fp-CH_{2}CO-Cl$$ $$(1) \qquad (2)$$ $$ML_{n} - / THF$$ Fp-CH₂CO-ML_n $$\begin{array}{lll} ML_n = CpFe(CO)_2 & (3) & 27\% \\ (\eta^5 - C_5H_4Me)Fe(CO)_2 & (4) & 13\% \\ CpMo(CO)_2(PPh_3) & (5) & 35\% \\ CpNi(CO) & (6) & 37\% \\ Mn(CO)_5 & (7) & 74\% \\ Co(CO)_3(PMe_2Ph) & (8) & 66\% \end{array}$$ $$Fp = CpFe(CO)_2$$, $Cp = \eta^5 - C_5H_5$, $THF = tetrahydrofuran$ ## Scheme 1 appearing at δ 253.28 unequivocally designates the presence of the ketene ligand.‡ Four C=O stretching vibrations observed in CH₂Cl₂ [(3) 2016, 1999, 1959, 1950 cm⁻¹; (4) 2017, 1997, 1960, 1943 cm⁻¹] are divided into two groups. A pair of absorptions of the highest and the third highest frequencies should be assigned to the ν (C=O) of the Fp_B part (cf. Fp-COMe 2015, 1960 cm⁻¹) and the remaining two absorptions to those of the Fp_A part (cf. Fp-Me 2003, 1948 cm⁻¹). In addition, the ν (C=O) absorption of the ketene ligand [(3) 1612 cm⁻¹; (4) 1611 cm⁻¹] is at lower frequencies by 35 cm⁻¹ when compared with that of Fp-COMe (1647 cm⁻¹). Furthermore, no indication of bridging carbonyl ligands (13 C n.m.r., i.r.) was observed which are characteristic of dinuclear carbonyl cyclopentadienyl iron complexes with a metal-metal bond such as $Cp_2Fe_2(CO)_4$ and $Cp_2Fe_2(CO)_3(\mu-CR_2)$. Similar observations for all the other heterobimetallic μ -ketene complexes (5)—(8), Fp-CH₂CO-ML_n (Table 1), verify that (a) the metal centres, Fe and M, exist as mutually independent mononuclear states and no evidence for metalmetal interaction can be detected, (b) the μ -ketene part acts as a dianionic bidentate ligand and makes two σ bonds between CH₂ and Fe and between CO and M, and (c) the shift of ν (C=O) absorption indicates the contribution of a π -complex⁵ in addition to the well-established oxycarbene structure⁶ (equation 1). Hydridic reduction (LiAlH₄)⁷ of (3), as an example, resulted in the formation of C-3 products [propane (5%) in the gas phase and propan-1-ol (48%) in the acidified liquid phase] as major components (total yield of other components <15%). Decarbonylation of (3) by Rh(PPh₃)₃Cl⁸ or irradiation did not produce a μ-methylene complex but a phosphine-substituted μ-ketene complex, Fp–CH₂CO–Fe(CO)(PPh₃)Cp (45%),§ or Cp₂Fe₂(CO)₄ (90%) and CH₂=C=O which was trapped as ethyl acetate (94%) in the presence of EtOH (3 equiv.). Compound (3) was not susceptible to carbonylation to lead to a μ-malonyl complex under various conditions [CO (50 atm), 120 °C, 12 h, in toluene; CO (1 atm), oxidants or [‡] While similar coupling is observed for (6) (Table 1), these signals for (5), (7), and (8) are obscured by the interaction with ³¹P, ⁵⁵Mn, and ⁵⁹Co nuclei. The acyl carbon of (4) does not exhibit a sharp triplet signal but a very broad triplet-like signal (²J ca. 3 Hz) and the reason is not clear at the present time. [§] 1 H N.m.r. (in $C_{6}D_{6}$) δ 2.81 [1H, dd, J(H–H) 11.1, J(P–H) 0.9 Hz, one of diastereotopic methylene protons], 2.96 [1H, d, J(H–H) 11.1 Hz, another methylene proton], 4.14 (5H, s, Fp), 4.44 [5H, d, J(P–H) 1.3 Hz, CpFe(CO)(PPh₃)], 6.92—7.12 (9H, m, Ph), 7.61—7.89 (6H, m, Ph). I.r. (KBr disk) ν (C≡O) 1995, 1943 (Fp), 1903 [CpFe-(CO)(PPh₃)]; ν (C=O) 1553 cm⁻¹. Lewis acids; +PR₃, 48 h, in refluxing MeCN]⁹ because of the electron-withdrawing character of the substituent adjacent to the migrating centre (FpCOCH₂). Oxidative methanolysis of (3) (Br₂, 1 atm CO, MeOH) afforded Br-CH₂CO-OMe (87%) accompanied by a trace amount of a carbonylated product, MeO-OC-CH₂CO-OMe (5%). We are grateful to the Ministry of Education for financial support of this research. Received, 14th April 1986; Com. 492 ## References - G. Blyholder and P. H. Emmet, J. Phys. Chem., 1960, 64, 470; M. Ichikawa, K. Sekigawa, K. Shikakura, and M. Kawai, J. Mol. Catal., 1981, 11, 167; C. Masters, Adv. Organomet. Chem., 1979, 17, 61 - 2 W. A. Herrmann, Adv. Organomet. Chem., 1982, 20, 159. - 3 μ-η²-(C,C)-ketene complexes: Y. C. Lin, J. C. Calabrese, and S. S. Wreford, J. Am. Chem. Soc., 1983, 105, 1679; E. D. Morrison, - G. R. Steinmetz, G. L. Geoffroy, W. C. Fultz, and A. L. Rheingold, *ibid.*, p. 1679; *ibid.*, 1984, **106**, 4783; E. D. Morrison and G. L. Geoffroy, *ibid.*, 1985, **107**, 3541; μ-η²-(C,O)-ketene complexes: S. C. H. Ho, D. A. Straus, J. Armantrout, W. P. Schaefer, and R. H. Grubbs, *ibid.*, 1984, **106**, 2210; μ₃-η³-(C,C,O)-ketene complex: J. S. Holmgren, J. R. Shapley, S. R. Wilson, and W. T. Pennington, *ibid.*, 1986, **108**, 508. - 4 J. K. P. Ariyaratne, A. M. Bierrum, M. L. H. Green, M. Ishaq, C. K. Prout, and M. G. Swanwick, J. Chem. Soc. (A), 1969, 1309. - 5 A. Cutler, S. Raghu, and M. J. Rosenblum, J. Organomet. Chem., 1974, 77, 381. - 6 R. B. King, J. Am. Chem. Soc., 1963, 85, 1918. - 7 A. Wong and J. D. Atwood, J. Organomet. Chem., 1981, 210, 395. - 8 E. J. Kuhlman and J. J. Alexander, *J. Organomet. Chem.*, 1979, 174, 81. - 9 T. C. Forschner and A. R. Cutler, *Organometallics*, 1985, 4, 1247; T. Bodnar, G. Coman, S. La Croce, C. Lambert, K. Menard, and A. Cutler, *J. Am. Chem. Soc.*, 1981, 103, 2471; R. H. Magnuson, R. Meirowitz, S. J. Zulu, and W. P. Giering, *Organometallics*, 1983, 2, 460; S. B. Butts, S. H. Strauss, E. M. Holt, R. E. Stimson, N. W. Alcock, and D. F. Shriver, *J. Am. Chem. Soc.*, 1980, 102, 5093.